


Fig. 20. Magnetic fields for HEE₁₂ mode at $z = L/2$.Fig. 22. Magnetic fields for HEE₂₁ mode at $z = L/2$.

Corrections to "A New Model for the Apparent Characteristic Impedance of Finned Waveguide and Finlines"

P. PRAMANICK AND P. BHARTIA

In the above paper,¹ the coefficients of (25) should have read

$$p = [AN^2 + 2BN - \bar{\alpha}_1^2]/BN^2$$

$$q = \left[B + 2AN - \frac{N}{4}(b/a)^2(\lambda/b)^2 - 2\bar{\alpha}_1\bar{\alpha}_2 \right]/BN^2$$

$$r = \left[A - \frac{1}{4}(b/a)^2(\lambda/b)^2 - \bar{\alpha}_2^2 \right]/BN^2$$

$$A = 1 + b_1(s/a)(\epsilon_r - 1)$$

$$B = a_1(s/a)(\epsilon_r - 1)$$

$$\bar{\alpha}_1 = \alpha_1/Z_0(f)$$

$$\bar{\alpha}_2 = \alpha_2/Z_0(f)$$

and α_1 and α_2 are given by (20a) and (20b), respectively.

Manuscript received December 2, 1986.

P. Pramanick is with the Satellite Communication Department, COM DEV Ltd., Cambridge, Ontario, Canada N1R 7H6.

P. Bhartia is with the Department of National Defence, Ottawa, Canada.

IEEE Log Number 8613409.

¹P. Pramanick and P. Bhartia, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-34, pp. 1437-1441, Dec. 1986.